3.3.10 \(\int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [210]

3.3.10.1 Optimal result
3.3.10.2 Mathematica [A] (verified)
3.3.10.3 Rubi [A] (verified)
3.3.10.4 Maple [B] (verified)
3.3.10.5 Fricas [B] (verification not implemented)
3.3.10.6 Sympy [F(-1)]
3.3.10.7 Maxima [F]
3.3.10.8 Giac [F(-2)]
3.3.10.9 Mupad [F(-1)]

3.3.10.1 Optimal result

Integrand size = 28, antiderivative size = 218 \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {11 \sqrt [4]{-1} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 \sqrt {a} d}+\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}+\frac {7 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 a d}-\frac {3 i \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 a d} \]

output
11/4*(-1)^(1/4)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+ 
c))^(1/2))/d/a^(1/2)+(1/2-1/2*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a 
+I*a*tan(d*x+c))^(1/2))/d/a^(1/2)+7/4*tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^ 
(1/2)/a/d-3/2*I*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)/a/d-tan(d*x+c)^( 
5/2)/d/(a+I*a*tan(d*x+c))^(1/2)
 
3.3.10.2 Mathematica [A] (verified)

Time = 1.35 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.91 \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {11 (-1)^{3/4} a \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}-2 i \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}+a \tan (c+d x) \left (7+i \tan (c+d x)+2 \tan ^2(c+d x)\right )}{4 a d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

input
Integrate[Tan[c + d*x]^(7/2)/Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
(11*(-1)^(3/4)*a*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*Sqrt[1 + I*Tan[c + 
 d*x]]*Sqrt[Tan[c + d*x]] - (2*I)*Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c 
+ d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[I*a*Tan[c + d*x]]*Sqrt[a + I*a*T 
an[c + d*x]] + a*Tan[c + d*x]*(7 + I*Tan[c + d*x] + 2*Tan[c + d*x]^2))/(4* 
a*d*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])
 
3.3.10.3 Rubi [A] (verified)

Time = 1.39 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.06, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {3042, 4041, 27, 3042, 4080, 3042, 4080, 27, 3042, 4084, 3042, 4027, 218, 4082, 65, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)^{7/2}}{\sqrt {a+i a \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4041

\(\displaystyle -\frac {\int -\frac {1}{2} \tan ^{\frac {3}{2}}(c+d x) \sqrt {i \tan (c+d x) a+a} (5 a-6 i a \tan (c+d x))dx}{a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \tan ^{\frac {3}{2}}(c+d x) \sqrt {i \tan (c+d x) a+a} (5 a-6 i a \tan (c+d x))dx}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \tan (c+d x)^{3/2} \sqrt {i \tan (c+d x) a+a} (5 a-6 i a \tan (c+d x))dx}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4080

\(\displaystyle \frac {\frac {\int \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} \left (7 \tan (c+d x) a^2+9 i a^2\right )dx}{2 a}-\frac {3 i a \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} \left (7 \tan (c+d x) a^2+9 i a^2\right )dx}{2 a}-\frac {3 i a \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4080

\(\displaystyle \frac {\frac {\frac {\int -\frac {\sqrt {i \tan (c+d x) a+a} \left (7 a^3-11 i a^3 \tan (c+d x)\right )}{2 \sqrt {\tan (c+d x)}}dx}{a}+\frac {7 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}}{2 a}-\frac {3 i a \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {7 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (7 a^3-11 i a^3 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx}{2 a}}{2 a}-\frac {3 i a \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {7 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (7 a^3-11 i a^3 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx}{2 a}}{2 a}-\frac {3 i a \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4084

\(\displaystyle \frac {\frac {\frac {7 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {11 a^2 \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-4 a^3 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}}{2 a}-\frac {3 i a \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {7 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {11 a^2 \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-4 a^3 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}}{2 a}-\frac {3 i a \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {\frac {\frac {7 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {11 a^2 \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx+\frac {8 i a^5 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}}{2 a}}{2 a}-\frac {3 i a \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\frac {7 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {11 a^2 \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {(4-4 i) a^{7/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a}}{2 a}-\frac {3 i a \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 4082

\(\displaystyle \frac {\frac {\frac {7 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {11 a^4 \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}-\frac {(4-4 i) a^{7/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a}}{2 a}-\frac {3 i a \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 65

\(\displaystyle \frac {\frac {\frac {7 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {22 a^4 \int \frac {1}{1-\frac {i a \tan (c+d x)}{i \tan (c+d x) a+a}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {(4-4 i) a^{7/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a}}{2 a}-\frac {3 i a \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {7 a^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {-\frac {22 \sqrt [4]{-1} a^{7/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(4-4 i) a^{7/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a}}{2 a}-\frac {3 i a \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{d}}{2 a^2}-\frac {\tan ^{\frac {5}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\)

input
Int[Tan[c + d*x]^(7/2)/Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
-(Tan[c + d*x]^(5/2)/(d*Sqrt[a + I*a*Tan[c + d*x]])) + (((-3*I)*a*Tan[c + 
d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/d + (-1/2*((-22*(-1)^(1/4)*a^(7/2)* 
ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]] 
)/d - ((4 - 4*I)*a^(7/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt 
[a + I*a*Tan[c + d*x]]])/d)/a + (7*a^2*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan 
[c + d*x]])/d)/(2*a))/(2*a^2)
 

3.3.10.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4041
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*(a + b*Tan[e + f*x])^m* 
((c + d*Tan[e + f*x])^(n - 1)/(2*a*f*m)), x] + Simp[1/(2*a^2*m)   Int[(a + 
b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[c*(a*c*m + b*d*(n 
 - 1)) - d*(b*c*m + a*d*(n - 1)) - d*(b*d*(m - n + 1) - a*c*(m + n - 1))*Ta 
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
 && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && GtQ[n, 1] && (In 
tegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4080
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] + Simp[ 
1/(a*(m + n))   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Sim 
p[a*A*c*(m + n) - B*(b*c*m + a*d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*T 
an[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4084
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b + a*B)/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] 
 - Simp[B/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[ 
e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - 
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 
3.3.10.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 663 vs. \(2 (170 ) = 340\).

Time = 1.14 (sec) , antiderivative size = 664, normalized size of antiderivative = 3.05

method result size
derivativedivides \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (2 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \left (\tan ^{2}\left (d x +c \right )\right )+4 i \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-2 i \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -22 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\, \tan \left (d x +c \right )+16 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+4 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \tan \left (d x +c \right )+11 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+2 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )-11 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}+14 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{8 d a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(664\)
default \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (2 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \left (\tan ^{2}\left (d x +c \right )\right )+4 i \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-2 i \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -22 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\, \tan \left (d x +c \right )+16 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+4 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \tan \left (d x +c \right )+11 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+2 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )-11 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}+14 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{8 d a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(664\)

input
int(tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/8/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*(2*I*2^(1/2)*ln((2*2^(1 
/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c)) 
/(tan(d*x+c)+I))*(I*a)^(1/2)*a*tan(d*x+c)^2+4*I*(a*tan(d*x+c)*(1+I*tan(d*x 
+c)))^(1/2)*(-I*a)^(1/2)*(I*a)^(1/2)*tan(d*x+c)^3-2*I*2^(1/2)*ln((2*2^(1/2 
)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/( 
tan(d*x+c)+I))*(I*a)^(1/2)*a-22*I*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2* 
(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*tan(d* 
x+c)+16*I*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I 
*a)^(1/2)+4*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/ 
2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*2^(1/2)*a*tan(d*x+c)+11 
*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^( 
1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*tan(d*x+c)^2+2*(-I*a)^(1/2)*(I*a)^(1/2) 
*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^2-11*ln(1/2*(2*I*a*tan(d 
*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))* 
a*(-I*a)^(1/2)+14*(-I*a)^(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c))) 
^(1/2))/a/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)/( 
-tan(d*x+c)+I)^2
 
3.3.10.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 658 vs. \(2 (160) = 320\).

Time = 0.31 (sec) , antiderivative size = 658, normalized size of antiderivative = 3.02 \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (3 \, e^{\left (4 i \, d x + 4 i \, c\right )} + 9 \, e^{\left (2 i \, d x + 2 i \, c\right )} + 2\right )} + {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {2 i}{a d^{2}}} \log \left (\frac {1}{4} \, a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {2 i}{a d^{2}}} \log \left (-\frac {1}{4} \, a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {121 i}{16 \, a d^{2}}} \log \left (\frac {208 \, {\left (11 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (3 i \, d x + 3 i \, c\right )} + e^{\left (i \, d x + i \, c\right )}\right )} + 2 \, {\left (3 \, a d e^{\left (2 i \, d x + 2 i \, c\right )} - a d\right )} \sqrt {-\frac {121 i}{16 \, a d^{2}}}\right )}}{6655 \, {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}}\right ) + {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {121 i}{16 \, a d^{2}}} \log \left (\frac {208 \, {\left (11 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (3 i \, d x + 3 i \, c\right )} + e^{\left (i \, d x + i \, c\right )}\right )} - 2 \, {\left (3 \, a d e^{\left (2 i \, d x + 2 i \, c\right )} - a d\right )} \sqrt {-\frac {121 i}{16 \, a d^{2}}}\right )}}{6655 \, {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}}\right )}{4 \, {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )}} \]

input
integrate(tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/4*(sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c 
) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(3*e^(4*I*d*x + 4*I*c) + 9*e^(2*I*d*x + 
2*I*c) + 2) + (a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))*sqrt(-2*I/(a 
*d^2))*log(1/4*a*d*sqrt(-2*I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a 
/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x 
+ 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)) - (a*d*e^(3*I*d*x + 3*I*c) + a*d 
*e^(I*d*x + I*c))*sqrt(-2*I/(a*d^2))*log(-1/4*a*d*sqrt(-2*I/(a*d^2))*e^(I* 
d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I 
*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)) - 
 (a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))*sqrt(-121/16*I/(a*d^2))*l 
og(208/6655*(11*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I* 
d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(3*I*d*x + 3*I*c) + e^(I*d 
*x + I*c)) + 2*(3*a*d*e^(2*I*d*x + 2*I*c) - a*d)*sqrt(-121/16*I/(a*d^2)))/ 
(e^(2*I*d*x + 2*I*c) + 1)) + (a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c 
))*sqrt(-121/16*I/(a*d^2))*log(208/6655*(11*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2 
*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*( 
e^(3*I*d*x + 3*I*c) + e^(I*d*x + I*c)) - 2*(3*a*d*e^(2*I*d*x + 2*I*c) - a* 
d)*sqrt(-121/16*I/(a*d^2)))/(e^(2*I*d*x + 2*I*c) + 1)))/(a*d*e^(3*I*d*x + 
3*I*c) + a*d*e^(I*d*x + I*c))
 
3.3.10.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Timed out} \]

input
integrate(tan(d*x+c)**(7/2)/(a+I*a*tan(d*x+c))**(1/2),x)
 
output
Timed out
 
3.3.10.7 Maxima [F]

\[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {\tan \left (d x + c\right )^{\frac {7}{2}}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}} \,d x } \]

input
integrate(tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(tan(d*x + c)^(7/2)/sqrt(I*a*tan(d*x + c) + a), x)
 
3.3.10.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(tan(d*x+c)^(7/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Non regular value [0] was discarded 
 and replaced randomly by 0=[84]Warning, replacing 84 by -86, a substituti 
on variab
 
3.3.10.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^{\frac {7}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^{7/2}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \]

input
int(tan(c + d*x)^(7/2)/(a + a*tan(c + d*x)*1i)^(1/2),x)
 
output
int(tan(c + d*x)^(7/2)/(a + a*tan(c + d*x)*1i)^(1/2), x)